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The percolation threshold of the network model by Barabási and Albert �Science 286, 509 �1999�� �BA� has
thus far only been “guessed” based on simulations and comparison with other models. Due to the still uncertain
influence of correlations, the reference to other models cannot be justified. In this paper, we explicitly derive
the well-known values for the BA model. To underline the importance of a null model like that of Barabási and
Albert, we close with two basic remarks. First, we establish a connection between the abundance of scale-free
networks in nature and the fact that power-law tails in the degree distribution result only from �at least
asymptotically� linear preferential attachment: Only in the case of linear preferential attachment does a mini-
mum of topological knowledge about the network suffice for the attachment process. Second, we propose a
very simple and realistic extension of the BA model that accounts for clustering. We discuss the influence of
clustering on the percolation properties.
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I. INTRODUCTION

Scale-free networks, i.e., networks with essentially
power-law degree distributions, have recently been widely
studied �see �1,2� for reviews�. Such degree distributions
have been found in many different contexts, for example in
several technological webs like the Internet �3�, the World
Wide Web �4�, or electrical power grids, and also in social
networks, like the network of sexual contacts �5� or of phone
calls �6�.

The standard model reproducing scale-free degree distri-
butions is the Barabási-Albert �BA� model �7�. It is based on
a growth algorithm with preferential attachment. Starting
from an arbitrary set of initial nodes, at each time step a new
node is added to the network. This node brings with it m
proper links which are connected to m nodes already present.
The latter are chosen according to the preferential attachment
prescription: The probability that a new link connects to a
certain node is proportional to the degree �number of links�
of that node. The resulting degree distribution of such net-
works tends to �8�

P�k� =
2m�m + 1�

k�k + 1��k + 2�
� k−3. �1�

A second older model which is also widely studied in the
context of scale-free networks is the configuration model �C
model�. This model is usually attributed to Bollobás �9� and
was first treated in a context related to percolation by Molloy
and Reed �10�. This is to some extent the “most random”
network possessing a given degree distribution P�k� and a
given number N of nodes. The building prescription starts
with sets of NP�k� nodes with k stubs each. The stubs are
then connected randomly to each other; two connected stubs
form a link. Double bonds and autoconnections can be ne-
glected in the limit of large networks, N→�.

II. PERCOLATION CONDITION

A. Theory

Let us recall the condition for a network at the percolation
threshold �11,12�: A node i, linked to a node j in the span-
ning cluster, is connected to exactly one other node on aver-
age. This results in an average degree �k�=2 of the spanning
cluster. These properties are obviously properties of trees.
More precisely, if the following conditions are satisfied, a
network is at the percolation transition: �1� There exists a
giant cluster, which is a tree �i.e., no loops�; �2� the distance
between two randomly chosen nodes is almost always infi-
nite �in the thermodynamic limit N→��, that is, the fraction
of pairs for which it is not infinite is zero.

We prove this in the following manner. On a tree �condi-
tion 1� there is always exactly one path between two nodes.
Now, we randomly delete from the tree a fraction p of all
links or nodes. Due to condition 2, the probability that two
arbitrarily chosen nodes still belong to one cluster is zero: It
is �1− p�n, where n is the distance �number of links� between
the two nodes, and since the distance diverges for almost all
pairs of nodes, the probability that the nodes are connected is
zero. In consequence, there does not exist any cluster that
consists of a nonzero fraction of nodes, i.e., no giant cluster
exists.

B. Application to the BA tree

The BA network with m=1 �BA tree� has two peculiar
qualities. First, it is exactly a tree; second it is fully con-
nected, i.e., it consists of one single cluster �if and only if the
starting network is fully connected—otherwise there are as
many giant components as there were components in the
starting network at t=0�. Using the conditions introduced
above, we now examine if pc=0 is the percolation threshold.

Obviously, condition 1 is satisfied by the construction al-
gorithm. Condition 2 also holds. In �13� Cohen and Havlin
�CH� calculate a lower limit for the diameter �mean distance
between all nodes� of scale-free networks. For a given degree
distribution they build a tree by starting with the node of the*Electronic address: wpietsch@gmx.de

PHYSICAL REVIEW E 73, 066112 �2006�

1539-3755/2006/73�6�/066112�7� ©2006 The American Physical Society066112-1

http://dx.doi.org/10.1103/PhysRevE.73.066112


highest degree as root, and then subsequently adding as off-
spring the nodes with the next-highest degrees. When a shell
is full, nodes are added to the next shell, etc. �To the same
shell belong all nodes with a fixed distance from the root.�
We will refer to this model as CH model. Cohen and Havlin
find that the number of shells diverges in the case of the
distribution of the BA model. This of course does not imme-
diately entail the divergence of the distance between almost
all pairs of nodes.

To prove the latter for the CH model, it suffices to con-
sider pairs including the node with the highest degree, be-
cause it has the maximum number possible of neighbors in
all shells. Now, from the construction algorithm of the CH
model as described above we know that on every shell there
are at least as many nodes as on the previous �excluding the
last shell, because nodes on the penultimate shell can have
degree 1�. This together with the fact that the number of
shells diverges proves that the distance between the node
with the highest degree and almost all other nodes diverges
in the CH model. Now, we consider all networks that are
trees and that have the same degree distribution as the BA
model with m=1. When in any such network we arbitrarily
choose one node as root and count the number of nodes in
the shells around it, we find that there are always fewer
nodes in each shell than in the corresponding shell of the CH
model, where we take the node with the highest degree as
root �except again the last shell�. It follows that condition 2
must be satisfied for the BA model.

We have shown that the percolation threshold for the BA
model with m=1 is pc=0. Of course, the percolation thresh-
old for a C network with the same degree distribution is pc
=1 due to the diverging second moment �11,12�. So, for the
BA degree distribution with m=1, pc depends strongly on
correlations.

C. Simulations

The simulations in Fig. 1 confirm the theoretical discus-
sion from above. The graph documents the percolation pro-
cess for different network sizes from 200 to 500 000 nodes.
We plotted for different p the relative size s of the giant
component depending on the network size. It is shown that
for a fixed p�0 the relation between the relative size of the
giant component s and the network size can be described by
a simple power law with a negative exponent. Thus, for all
p�0, the relative size of the giant component s approaches
zero for N→�.

III. THE ROLE OF THE TREE STRUCTURE

We will now try to determine the origin of the percolation
threshold pc=0 for the BA tree. As already mentioned, this
threshold contradicts the common notion �proven for the C
model�, that for power-law exponents ��3 the diverging
second moment of the degree distribution yields a percola-
tion threshold pc=1. Does the unusual percolation threshold
pc=1 stem from the peculiarities of the BA tree? In the fol-
lowing we examine the importance of the tree topology. For
this purpose we determine the change of the percolation
threshold when we randomly add a few links to the BA tree.

Therefore, we calculate the cluster-size distribution for the
BA tree depending on p.

A. The cluster-size distribution for the BA tree

In the BA model each link has a direction determined by
the preferential attachment rule: Each node has exactly m
incoming or proper links that are attached to it at the moment
when the node enters the network. All other links will be
called outgoing links. In the following we consider m=1, the
connected tree. We remove a certain fraction p of all links
from the network. Then the network breaks into as many
clusters as links are removed �plus 1�. For every cluster one
incoming link was deleted and a certain number of outgoing
links. In Fig. 2 an exemplary cluster is shown. There, links
enter nodes in the direction of the arrow.

FIG. 1. Link removal in BA networks with m=1. The scaling of
the percolation process with increasing network size is examined.
The nine curves correspond to p=0.1–0.9 in steps of 0.1 from top
to bottom. The values for the different network sizes were averaged
over 9999 runs for 200, 500, and 1000 nodes, over 500 runs for
5000 nodes, over 100 runs for 10 000 nodes, and over 20 runs for
both 50 000 and 500 000 nodes. The graph suggests that for infinite
network size there will be no giant cluster independent of p�0.

FIG. 2. An exemplary cluster. Each node has an incoming link
in the direction of the arrow. All other links are counted as outgo-
ing. The dotted lines are the removed links, the solid ones are the
links drawn. On the far left we see the only removed incoming link
for the whole cluster.
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We are interested in the cluster-size distribution in the
limit of large cluster sizes. First, we count the outgoing links
of a cluster. Ls drawn outgoing links will belong to this clus-
ter. In the whole network, only �1− p� of all links are drawn.
Then, Lu=xLs deleted outgoing links belong to the cluster. In
the limit of clusters with many nodes, we have x= p / �1− p�.

We now examine the development of a percolated net-
work, i.e., already at the entry of a node the decision is made
if its proper link is drawn. We can formulate a dynamical
equation for the evolution of the cluster sizes with a large
number of nodes k:

d

dt
C�k� = �1 − p��C�k − 1���k − 2�	2 +

p

1 − p

�

2N

−

C�k���k − 1�	2 +
p

1 − p

�

2N
� . �2�

C�k� is the number of clusters with k nodes in the network.
At every time step a new node is added, whose link is drawn
with probability �1− p�, which is the first factor on the right-
hand side of the equation. If the link is deleted, automatically
a cluster of size 1 is added to the network. We neglect this
term since we are interested only in the limit of large k. The
first addend on the right-hand side accounts for the new node
being linked to a cluster with size k−1. The number of
drawn stubs is 2�k−2�, and �k−2�p / �1− p� is the number of
deleted �outgoing� stubs. �A stub is half a link; we neglect
the single stub of the one deleted incoming link.� The sum of
both yields the total number of stubs in the cluster that de-
termines the linear preferential attachment of a new node to
the cluster. 2N is approximately the total number of stubs in
the network with N nodes. The second addend accounts for
the new node being linked to a cluster of size k.

We now assume that C�k�=c�k�t=c�k�N with c�k� con-
stant for large N, where N is the number of nodes in the
network. �This follows immediately from the statistical na-
ture of the networks.� We have

c�k� = �1 − p�
c�k − 1���k − 2�	1 +
1

2

p

1 − p

�

− c�k���k − 1�	1 +
1

2

p

1 − p

�� . �3�

We can solve this equation for c�k� /c�k−1� with k�1:

c�k�

c�k − 1�
=

k − 2

k − 1 + 1 � 	1 −
1

2
p
 . �4�

In the limit of large k it follows that

c�k� � k−�1+1/�1−p/2��. �5�

We see that for 0� p�1, the exponent lies between 2 and 3.
We checked Eq. �5� in Fig. 3, where we plotted the cluster-
size distributions for BA trees with 100 000 nodes. For five

values between 0.3 and 0.9 we found a good correspondence
between the simulated curves and the theoretical prediction.

B. Randomly adding links

The calculation of the cluster-size-distribution is not eas-
ily generalized to BA models with m�1. We will now de-
stroy the tree topology by adding links between randomly
and uniformly chosen nodes. We will call these links R links.
Note that this does not change the exponent of the power-law
tail of the degree distribution. Does it change the percolation
threshold? The new links connect the old clusters, which are
distributed according to C�k�. The number of R links added
to a cluster is for large clusters proportional to the cluster
size k, i.e., the number of nodes in the cluster.

Let r be the average number of links added to every node.
Now, it can be shown that as long as r�0 a spanning cluster
exists that comprises a finite fraction of all nodes in the net-
work. The argument is analogous to the reasoning why there
is a spanning cluster in a C network with diverging second
moment of the degree distribution. When following one of
the newly added R links, we find the following probability
distribution for encountering a cluster of size k:
kC�k� / ��kkC�k��. For large enough k, the total number of R
links connecting to such a cluster of size k will approxi-
mately be rk. Now, when we follow a link to a cluster, we
can calculate the average number of outgoing links from this
cluster:

r

�
k

k�k − 1�C�k�

�
k

kC�k�
. �6�

If this expression diverges a finite fraction �0 of all clusters
will be connected after the addition of the R links �for the

FIG. 3. Distribution of cluster sizes in BA trees with 100 000
nodes each. The five curves correspond to p=0.3, 0.5, 0.7, 0.8, and
0.9 �from top to bottom, each averaged over 50 runs�. The dashed
lines show the corresponding theoretical results for the exponent of
the power-law tail, resulting for a double-logarithmic plot in a line
with slope −1−1/ �1−0.5p�. The offset for the theoretical curves is
adjusted manually.
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same reason that in the C model with diverging second mo-
ment of the degree distribution a spanning cluster develops�.
To this “supercluster” clusters with a large number of nodes
will belong with a higher probability than small clusters and
it follows directly that the supercluster also comprises a finite
fraction greater than 0 of the nodes in the network, i.e., the
supercluster is also a spanning cluster.

We calculated in Sec. III A that for all p between 0 and 1
the cluster-size distribution c�k� of the BA tree has a power-
law tail with exponent between 2 and 3. Since for these c�k�
the expression �6� diverges, there always exists a giant com-
ponent �the supercluster mentioned above� in the BA tree
with additional random links independent of r�0. That leads
to a percolation threshold pc=1 for the model with additional
links as opposed to pc=0 for the BA tree. In this sense the
BA tree has a critical topology.

C. Mapping the m=1 BA model onto an m=2 BA model

In this section we prove that the BA model with m�1 has
a percolation threshold of pc=1. There exists an easy way of
mapping the BA model with m=1 onto the BA model with
m=2. The prescription is the following �see Fig. 4�. �1� Par-
tition the whole network into pairs of nodes with a difference
in age of 1 �the age of a node is a natural number represent-
ing the moment when the node is added to the network;
nodes are numbered consecutively�. �2� Replace each pair of
nodes by a single node.

With the same effect we can add a “nonremovable” link
between the two nodes of each pair �nonremovable links are
not affected by percolation�. With the addition of the nonre-
movable links we add to every node of the BA tree one
additional link—independent of 0� p�1. When translating
the number of nodes in a cluster of the BA tree with addi-
tional links to the number of nodes in a cluster of the BA
model with m=2, we have to divide the number of nodes by
2, because the entity of two nodes and one nonremovable
link corresponds to one single node in a BA network with
m=2.

To apply the considerations of the last section III B in
order to prove that pc=1 for a BA model with m=2, we still
have to show that the nonremovable links between the nodes
are randomly distributed. Actually it suffices to consider only
large clusters of size k�k0 with an arbitrary but finite k0.
�Those large clusters comprise a nonzero fraction of all
nodes in the network.� This is because if there is a giant

component in the subnetwork of those large clusters, then
there is also a giant component in the whole network, since
the large clusters already constitute a finite part of the net-
work.

Due to the statistical nature of our networks, we can say
that in all large clusters we find approximately the same age
distribution. For this reason we can say that the large clusters
are randomly linked to each other and that the probability for
connecting to a cluster j with one nonremovable link �origi-
nating in cluster i� is proportional to the number of nodes in
cluster j. Thus, the network of the large clusters corresponds
to the network model treated in Sec. III B. Since in the sub-
network of large clusters the cluster sizes are distributed ac-
cording to a power law with an exponent �3, there exists a
giant component in the whole network �as we have proven in
the previous section�.

If this statistical argument is not convincing, consider a
percolated BA network of size N with m=1 and a certain p.
In such a network we observe a certain cluster-size distribu-
tion according to Eq. �5�. We now let the network develop to
size 1.5N with m=2, i.e., from now on every new node will
have two proper links. If both proper links are drawn �prob-
ability �1− p�2�, then the new node will link two clusters in
the original network of size N with a probability larger than
1/4 �lower limit for the probability that both links connect to
the original network�. Since according to preferential attach-
ment the new links will connect to existing clusters only
dependent on the cluster size, these new nodes will serve as
bridges between clusters exactly in the way required in Sec.
III B. Thus, independent of p�1, BA networks with m=2
will have a giant cluster, as we set out to prove.

This consideration can easily be generalized to BA net-
works with other m�1. We can even treat networks with
fractional �m�, where �m� is the average number of additional
links added per step �with an upper boundary m0 for the
number of links added in each step�. For �m��1 the perco-
lation threshold is always pc=1.

IV. A NOTE ON SCALE-FREE NATURE AND LINEAR
PREFERENTIAL ATTACHMENT

In the following we will briefly address a few essential
aspects of the BA model. These underline the importance of
this model as a null model. First, we will establish a connec-
tion between the abundance of scale-free networks in nature
and the fact that scale-free degree distributions emerge only
for asymptotically linear preferential attachment. For linear
preferential attachment only minimal topological knowledge
about the network is required for attaching a new node to the
network.

It is well known that nonlinear preferential attachment
results in degree distributions that are not scale-free �14�. In
the sublinear case the degree distribution is a stretched ex-
ponential. In the asymptotically linear case, the degree dis-
tribution follows a power-law asymptotic behavior for large
degrees k. In the superlinear case, a “winner takes all” phe-
nomenon arises, i.e., a single dominant gel node emerges.

We now show why linear preferential attachment is indis-
pensable for economy in the information required for the

FIG. 4. Mapping m=1 �left side� on m=2 �right side� networks.
Pairs of nodes with difference in age of 1 are combined into one
single node. a, etc., denote here the age of the nodes.

WOLFGANG PIETSCH PHYSICAL REVIEW E 73, 066112 �2006�

066112-4



attachment of a new node. Only for linear preferential attach-
ment can the new node connect in a hierarchical process,
subsequently increasing the resolution of only the portion of
the network that the node will attach to.

Consider somebody who wants to publish a new webpage
about a certain topic, e.g., India. To which already existing
pages does he link his page? There are millions of webpages
about India, which can be categorized into several topics.
Our webpage designer chooses a few of those topics �first
level�. For example, he wants to make a link to a travel
agency that organizes tours through India. Then, he chooses
one of the agencies according to their whole Internet repre-
sentation, combining several webpages �second level�. Fol-
lowing his choice, he will look in detail at the webpages of
the agency, and will then decide to which page exactly he
makes his link �third level�. We will find in the following that
this hierarchical process of decision making is only possible
with linear preferential attachment.

We introduce the component transformation that lets us
combine arbitrary groups of nodes to hypernodes. The com-
ponent transformation allows us to look at the network at
different resolutions. At lower resolutions, the amount of in-
formation necessary for the characterization of the network,
is smaller. The component transformation allows that a new
node attaching to the network can do so in a hierarchical
process, consecutively increasing the resolution of only the
part of the network it attaches to. We find that this hierarchi-
cal connection procedure, which follows the same preferen-
tial attachment rule at every resolution, is only possible for
networks with linear preferential attachment.

We define the component transformation as shown in
Fig. 5.

�1� Nodes are arbitrarily grouped into neighborhoods, so
that each node can be assigned to exactly one neighborhood.

�2� Each neighborhood is replaced by a hypernode.
�3� Links between nodes of different neighborhoods are

converted into links between the corresponding hypernodes.
�4� Each link between nodes of the same neighborhood is

converted into an autoconnection of the corresponding hy-
pernode.

Using the component transformation we can consider
each network at many different levels or resolutions. After a
component transformation the network can again be sub-

jected to another component transformation. In each transfor-
mation, information is lost. However, for a new node i this
information is irrelevant for the decision, to which hypern-
ode j it will connect according to preferential attachment.

Then, to attach node i to the network it suffices to look at
the fine structure only of the hypernode j, while the fine
structure of all other hypernodes is irrelevant for the attach-
ment process. Finally, the fine structure of the hypernode can
again have a superfine structure, etc.

We now prove that this hierarchical process is only pos-
sible for linear preferential attachment,

�i =
ki

�
n

kn

. �7�

Here, the probability �i that a new node attaches to the old
node i is proportional to the degree of that node ki. The
component transformation is �Ii

i� I, i.e., the nodes i are
combined to groups Ii, which are replaced by the hypernode
I. We also have �Ii

ki�kI, i.e., the degree of the hypernode kI

equals the sum of degrees of all nodes in Ii. Now, with linear
preferential attachment the probability that a new node at-
taches to I is

�I =
kI

�
I

kI

=

�
Ii

ki

�
I

�
Ii

ki

= �
Ii

�i. �8�

So the probability that a node attaches to a group of nodes Ii
is equal to the sum of the probabilities that it attaches to one
of the nodes in the group. We stress that this does not work
anymore with nonlinear preferential attachment:

�I =
kI

	

�
I

kI
	

�

�
Ii

ki
	

�
I

�
Ii

ki
	

= �
Ii

�i. �9�

So we have shown that linear preferential attachment assures
that a new node does not have to know the fine structure of
the whole network in order to “decide” which part it will
attach to. The new node does not need to know the topology
of the whole network, and it does not need to know at which
resolution it is looking at the network. This scale-
independent quality of the attachment procedure works only
for linear preferential attachment and is lost for nonlinear
preferential attachment. We have shown that requiring a
minimization of the amount of information available to the
new node results in linear preferential attachment, and thus
in a scale-free degree distribution. These considerations can
easily be generalized to linear preferential attachment with
initial attractiveness Ai�0 of node i. The hypernode I then
simply has the attractiveness AI=�Ii

Ai. An essential quality
for the preferential attachment seems to be that the value or
worth attributed to a larger portion of a network is equivalent
to the sum of its parts.

FIG. 5. The component transformation. Arbitrary nodes are
grouped together to form a single node. All outgoing edges are
preserved in the process. Edges connecting nodes within one group
are converted into autoconnections.
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V. CLUSTERING AND THE BA MODEL

The most problematic aspect of the BA model is the lack
of clustering, which stands in harsh contrast to observations
in real networks. We will in the following propose a very
simple extension of the BA model that allows us to imple-
ment a wide range of clustering, while it exactly preserves
the degree distribution of the BA model.

We assume that every new node added to the network
brings with it m=2 proper links. These proper links connect
the new node with nodes in the network according to differ-
ent criteria. For example, in a friendship network, every in-
dividual would have the right to make two friends. The first
friend �s�he chooses from people who do the same job as
�s�he. The second friend �s�he chooses from people who have
the same favorite hobby. Both times �s�he preferably be-
friends those people that already have a lot of friends �i.e.,
preferential attachment�.

The new feature compared with the BA model is that at its
introduction we assign to each node i two parameters, a job
parameter 0� pj,i�1 and a hobby parameter 0� ph,i�1.
Each new node has a job link and a hobby link. Now, ac-
cording to preferential attachment we first determine the de-
gree kx of node x that the job link will attach to. Then we
search for that node x with degree kx that has the pj,x closest
to pj,i, corresponding to the best matching of common inter-
ests. The same procedure determines node y, that the hobby
link of i attaches to. The parameters pj and ph can of course
be identified with two-dimensional coordinates in a geogra-
phy. A generalization to more than two parameters is
straightforward.

Note that by definition of the evolution algorithm the de-
gree distribution develops in the same way as for BA net-
works, independent of the clustering effect. This can be seen
on a step-by-step basis. Every time a new node and its two
proper links are added, the existing degree distribution to-
gether with the preferential attachment procedure exclusively
determines the further evolution of the degree distribution.
The topology of the network plays no role. Thus, the degree
distribution of our model including clustering will not be
different from that of a simple BA model.

Qualitatively, the clustering depends on the correlations
between the parameters pj,i and ph,i. As a rule, we choose pj,i
uniformly at random. ph,i is chosen depending on the value
pj,i. There are two limiting cases.

�1� The choice of ph,i is independent of the choice of pj,i.
Then our model corresponds exactly to the BA model with
m=2 and exhibits a very small clustering coefficient that
vanishes as N→�. �The clustering coefficient for a single
node i is commonly defined as the number of direct neigh-
bors of i, that are linked with each other, divided by the
number of possible pairs of direct neighbors of i. The clus-
tering coefficient of the whole network is the average of all
clustering coefficients for the single nodes �15�.�

�2� ph,i= pj,i= pi. Then the clustering is maximal.
For the second case, when the degrees kx and ky of nodes

x and y are equal, a double bond would be formed. If as an
additional rule we prohibit double bonds, the second link
will be connected to a node y with the parameter closest to pi
but unequal node x. Now, the clustering is maximal, because
the probability that nodes x and y are neighbors is maximal.
In the case that x and y are neighbors a new triangle is
formed in the network. Note that in this case the clustering
can be fairly independent of the network size.

Let us finally address the percolation properties of these
clustered networks. It is clear that for strong correlations
between ph and pj as in the second case the argument pre-
sented in Sec. III C is not valid anymore. The reason for this
is that the additional undeletable links tend to link nodes in
the same cluster. Mapped on a BA model with m=1, job and
hobby nodes would be added alternately to the network. Sub-
sequent nodes would pairwise have the same parameter pi
and would consequently be linked to the same neighborhood
with a high probability. So when we reconstruct the m=2
model, in many cases nodes will be combined that already
belong to the same neighborhood. In the case of strong cor-
relation between the hobby and job parameters, neighbor-
hoods form with similar job and hobby parameters. How-
ever, as pointed out in Sec. III B, the peculiar percolation
behavior pc=1 will result, if just a few small-world links are
added: For example if an arbitrarily small but finite fraction
of hobby parameters are chosen totally independent of the
job parameter, the percolation threshold pc=1 will be recov-
ered.

VI. CONCLUSION

We have proven that the percolation threshold of the
Barabási-Albert model is in fact pc=1, except in the case
m=1, when only one link is added for each new node. To our
knowledge this was shown here for the first time in the phys-
ics literature. In �16� Bollobás and Riordan also briefly ad-
dress how from their derivation of the diameter of BA net-
works follows the value for the percolation threshold of BA
networks with m
2. Apart from that, thus far the value of
the percolation threshold was based only on simulations and
comparison with the configuration model. It is worth noting
that the result achieved here is perhaps not as evident as it
may seem. Due to the uncertain role of correlations, the BA
model and the configuration model are not equivalent in per-
colation properties as can be seen from the case of the BA
model with m=1. We closed with remarks underlining the
importance of the BA model as a null model and how clus-
tering can be naturally accounted for.
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